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The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU



Outline

2. DRAM Internal Organization

— DRAM Cell
— DRAM Array
— DRAM Bank




DRAM Bank

How to build a DRAM bank
from a DRAM array?
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DRAM Bank: Collection of Arrays
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Row m, Col n v

1. Enable row m \

2. Access col n \

3. Close row
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DRAM Chip Hierarchy

Collection of Banks

R A R
R R A
R R AR

Collection of Subarrays



Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions

— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

— Parallelism (Subarray-level Parallelism, ISCA 2012)




Factors That Affect Performance

1. Latency
— How fast can DRAM serve a request?

2. Parallelism
— How many requests can DRAM serve in parallel?



DRAM Chip H|erarchy

Collection of Banks

Parallelism

LSS S S S S
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Collection of Subarrays 0



Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions

— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

— Parallelism (Subarray-level Parallelism, ISCA 2012)
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Subarray Size: Rows/Subarray

Number of rows in subarray
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Subarray Size vs. Access Latency

Shorter Bitlines => Faster access
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Smaller subarrays => lower access latency
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Subarray Size vs. Chip Area

Large Subarray Smaller Subarrays

<</

YTy

<<

YTy

<<

0004

Smaller subarrays => larger chip area
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Chip Area vs. Access Latency

c 4 __-=> 32rows/subarray .

g -

a 3 Commodity DRAM
S (512 rows/subarray)

20 30 40 50 60
Access Latency (ns)
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Chip Area vs. Access Latency

__-2> 32 rows/subarray

-

Commodity DRAM
(512 rows/subarray)

7

Normalized Chip Area
N

20 30 40 50 60
Access Latency (ns)

How to enable low latency without high area overhead?




New Proposal
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Tiered-Latency DRAM

- Higher access latency

Far segment - Higher energy/access

+ Lower access latency

Near Segment
+ Lower energy/access

Map frequently accessed data to near segment




Results Summary
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Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM
Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri,
Jamie Liu, Lavanya Subramanian, Onur Mutlu

Published in the proceedings of 19t IEEE International
Symposium on

High Performance Computer Architecture 2013
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DRAM Stores Data as Charge

DRAM cell

Three steps of
charge movement

1. Sensing
2. Restore
3. Precharge

Sense amplifier



DRAM Charge over Time

cell 1 cell
Data 1
Q
20
of-"-"- - Cre
< |Sense amplifier
Sense amplifier
P Data O
.. | >
Timing Parameters Sensing Restore time
In theory

In practicel

Why does DRAM need the extra timing margin?



Two Reasons for Timing Margin

1. Process Variation
- DRAM cells are not equal

- Leads to extra timing margin for cells
that can store large amount of charge

2. Temperature Dependence



DRAM Cells are Not Equal
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Large variation in access latency




Two Reasons for Timing Margin

1. Process Variation

- DRAM cells are not equal

- Leads to extra timing margin for cells
that can store large amount of charge

2. Temperature Dependence
- DRAM leaks more charge at higher

temperature

- Leads to extra timing margin when
operating at low temperature




Charge Leakage Temperature
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temperature
and large charge at low temperature
Large variation in access latency




DRAM Timing Parameters

* DRAM timing parameters are dictated by
the worst case

— The smallest cell with the smallest charge
in all DRAM products

— Operating at the highest temperature

* Large timing margin for the commmon case
=5 anglowér latency for the

common Case






Obs 1. Faster Sensing

Typical DIMM at 115 DIMM
Low Temperature characterization

Timin
More charge ( tRCD

:lnlululul“lg Strong charge
RS 17% 3
HEEEEN

Faster sensing No Errors

Typical DIMM at Low Temperature
More charge | | Faster sensing




Obs 2. Reducing Restore Time

Typical DIMM at
Low Temperature

115 DIMM

characterization
Larger cell &

Less leakage [] Read (tRAS)
Extra charge

37% |
No need to fully Write (tWR)

restore charge
54% |

No Errors

Typical DIMM at lower temperature

[ ] More charge

Restore time reduction




Obs 3. Reducing Precharge Time

Typical DIMM at Sensing Half Precharge
Low Temperature

Empty
(V)

Sense amplifier

Precharge ? - Setting bitline to half-full charge



Obs 3. Reducing Precharge Time

Access empty cell  Access fullcell 115 DIMM
characterization

Not fully
pre‘*‘arged/\ Timing
% (tRP)
o
bitline 35 /o J’
No Errors

Typical DIMM at Lower Temperature



Adaptive-Latency DRAM

* Key idea
— Optimize DRAM timing parameters online

* Two components

Iple sets of
different

temperatures for e
— System monitors
DRAM timing parameters

L uses appropriate



Real System Evaluation
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iImprovement, greater for multi-core workloads



Summary: AL-DRAM

Observation

-  DRAM timing parameters are dictated by the worst-case cell
(smallest cell at highest temperature)

Our Approach: Adaptive-Latency DRAM (AL-DRAM)

— Optimizes DRAM timing parameters for the common case
(typical DIMM operating at low temperatures)

Analysis: Characterization of 115 DIMMs

- Great potential to lower DRAM timing parameters (17 -
54%) without any errors

Real System Performance Evaluation

- Significant performance improvement (14% for memory-
intensive workloads) without errors (33 days)



Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case

Donghyuk Lee, Yoongu Kim,

Gennady Pekhimenko, Samira Khan, Vivek
Seshadri, Kevin Chang, and Onur Mutlu
Published in the proceedings of 21

International Symposium on High Performance
Computer Architecture 2015
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Outline

1. What is DRAM?
2. DRAM Internal Organization

3. Problems and Solutions
— Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)

‘ — Parallelism (Subarray-level Parallelism, ISCA 2012)‘
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Parallelism: Demand vs. Supply

Demand Supply

Out-of-order
Execution

Multiple
Prefetchers Banks
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Increasing Number of Banks?

Adding more banks — Replication of shared structures

Replication = Cost

39




Our Observation

Local to a subarray

> 1. Wordline enable

.7 4. Charge restoration

/7 2.Chargesharing /5 Wordline disable
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>
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Subarray-Level Parallelism
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Subarray-Level Parallelism: Benefits

. Two requests to
Commodity DRAM =~ different subarrays

/" in same bank
‘ ‘ ‘ Data Access ‘ ‘ w:'I
‘ ‘ Data Access ‘ ‘ ‘

Data Access

Data Access

Subarray-Level Parallelism
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Results Summary

B Commodity DRAM B Subarray-Level Parallelism
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A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM

Yoongu Kim, Vivek Seshadri, Donghyuk Lee,
Jamie Liu, Onur Mutlu

Published in the proceedings of 39t

International Symposium on Computer Architecture
2012
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CSC 2224: Parallel Computer
Architecture and Programming
Main Memory Fundamentals

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU



Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

Review: Memory Latency Lags Behind
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We Need A Paradigm Shift To ...

* Enable computation with minimal data movement

 Compute where it makes sense (where data resides)

* Make computing architectures more data-centric

438



Processing Inside Memo

Processor t Database

Core

Graphs
! Media

J)

Results chnterconnec Problem

* Many questions ... How do we design the: Program/Languac
— compute-capable memory & controllers? System Software

— processor chip? SW/HW Interface
— Software and hardware interfaces?
— system software and languages?
— algorithms?




Why In-Memory Computation Today?
{ﬂ?@l:l'#ﬂ%ﬁ

* Pull from Systems and Applications
— Data access is a major system and application bottleneck

— Systems are energy limited
— Data movement much more energy-hungry than computation

50



Two Approaches to In-Memory Processing
*|1. Minimally change DRAM to enable simple yet

— RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
— Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
— Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit S

trided Accesses
(Seshadri et al., MICRO 2015)

* 2. Exploit the control logic in 3D-stacked memory to
enable more comprehensive computation near memory

PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture

(Ahn et al., ISCA 2015)
A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing (Ahn et al., ISCA 2015)

Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation (Hsieh
et al., ICCD 2016)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf

Approach 1: Minimally Changing DRAM

* DRAM has great capability to perform bulk data movement and
computation internally with small changes
— Can exploit internal bandwidth to move data
— Can exploit analog computation capability

* Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM

— RowClone: Fast and Efficient In-DRAM Copy and Initializa
tion of Bulk Data

(Seshadri et al., MICRO 2013)
— Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)

— Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Sp
atial Locality of Non-unit Strided Accesses

(Seshadri et al., MICRO 2015)
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http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
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Starting Simple: Data Copy and Initialization

Bulk Data L
Copy

Bulk Data
Initializatio
n




Bulk Data Copy and Initialization

The Impact of Architectural Trends on Operating System Performance

Mende! Rosenblum, Edouard Bugnion, Stephen Alan Herrod,
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Bulk Data Copy and Initialization

memmove & memcpy: 5% cycles in Google’'s datacenter |
ISCA’15]

00000
00000
Zero initializatio

Forking (e.g., securityfheckpointing

Many more

VM Cloning Ppage Migration
Deduplication
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Today’s Systems: Bulk Data
Copy

1) High latency
3) Cache pollution \

/

2) High bandwidth utilization

4) Unwanted data movement

1046ns, 3.6u) (for 4KB page copy via DMA)

56



Future Systems: In-Memory Copy

3) No cache pollution 1) Low latency

2) Low bandwidth utilization
4) No unwanted data movement

1046ns, 3.6u) [] 90ns, 0.04u) .



RowClone: In-DRAM Row Copy

Transfer
row

Transfe
row

4 Kbytes

N e

Hap

Idea: Two consecutive ACTivates

Negligible HW cost

1: Activate row A

2: Activate row B

DRAM subarray

CEEPV TP PPV TP PP PP TPV T T Row Buffer (4 Kbytes)

Data Bus
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RowClone: Intra-

Row Buffer
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RowClone: Inter-Bank

N gp— 2

O . N [ B
-
S | || | M—| Bank
c
O = I 7 I “ | Shared
> = Internal
- < | N [ \
O QO bus
- ]
Q
z N J /L ))
the write
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Generalized RowClone 0.01% area cost

Inter Subarray Copy ,
(Use Inter-Bank Copy Twice)
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RowClone: Fast Row
Initialization

v

Fix a row at Zero
(0.5% loss in capacity)
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RowClone: Bulk Initialization

* Initialization with arbitrary data
— Initialize one row
— Copy the data to other rows

e Zero initialization (most common)
— Reserve a row in each subarray (always zero)
— Copy data from reserved row (FPM mode)
— 6.0X lower latency, 41.5X lower DRAM energy
— 0.2% loss in capacity
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RowClone: Latency & Energy Benefits

Energy Reduction

Latency Re-
11.6x iction go [4-4%
41.5x
12 6.0x 00
3 40
1.9x i .
4 1'0X1 20 3.2x 1.5x
R R
- © c @© @© o o C = N
Very low cost: 0.01% Iincrease in die
area
- = = = — — — J
e Copy | zero | | Copy | Zero |
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Copy and Initialization in Workloads

BmZero HECopy lWrite lRead
A

Fraction of Memory Traf -
fac
D
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RowClone: Application
Performance

% Compared to Baseline

o0
o

70
60
50
40
30
20

10

H [PC Improvement B Energy Reduction

bootup

|

compile forkbench mcached mysql shell
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End-to-End System Design

- How to communicate
Application occurrences of bulk
copy/initialization across
layers?

Operating System

How to ensure cache
coherence?

How to maximize latency

Microarchitecture .
and energy savings?

DRAM (RowClone) How to handle data
reuse?
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Ambit

In-Memory Accelerator for Bulk Bitwise Operations
Using Commodity DRAM Technology

Vivek Seshadri

Donghyuk Lee, Thomas Mullins, Hasan Hassan,
Amirali Boroumand, Jeremie Kim, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C.
Mowry

SAFARI Carnegie Mellon (intel“”)
== Microsoft  [ETH zirich



Executive Summary

* Problem: Bulk bitwise operations
— present in many applications, e.g., databases, search filters
— existing systems are memory bandwidth limited

* Our Proposal: Ambit
— perform bulk bitwise operations completely inside DRAM
— bulk bitwise AND/OR: simultaneous activation of three rows
— bulk bitwise NOT: inverters already in sense amplifiers
— less than 1% area overhead over existing DRAM chips

* Results compared to state-of-the-art baseline

— average across seven bulk bitwise operations
* 32X performance improvement, 35X energy reduction

— 3X-7X performance for real-world data-intensive applicafiens



BitWeaving

Bitmap indices (database queries)

(database indexing)

BitFunnel

S merfies web search)

Set operations \_ Operation

DNA
sequence mapping

Encryption algorithms
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Today, DRAM is just a storage device!

H

Throughput of bulk bitwise
operations limited by available
memory bandwidth 72




Our Approach

)

Use analog operation of DRAM to
perform bitwise operations
completely inside memory!
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Inside a DRAM Chip
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DRAM Cell Operation

wordline

capacitor

bitline

\4

access
transisto
r

enable

bitline
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DRAM Cell Operation deviation
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Triple-Row Activation: Majority Function
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rows
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Bitwise AND/OR Using Triple-Row Activation
1 Voo

A ]




Bitwise AND/OR Using Triple-Row Activation

1—_|__VDD

A | | _|output = AB + BC + C2
. v — C(AORB) +
— ~C (A AND B)
o L]
1 \
1 _ lue of
| |38E?ipr<>vem%°r‘wbeh5° ! bitwise
C - throughput D
| 44X reduction in energy
1 - consumption
N for bulk bitwise AND/OR ¢
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Bulk Bitwise AND/OR in DRAM

tically reserve three designated rows tl, t2, and t3

It = row A AND/OR row B

1.. CoppdatacofrowiArtovovatt
2.. CopyuataofaowiBrovowst2
3 MICRO 2013
4, RowClone: Fast and Energy-Efficient
5 In-DRAM Bulk Data Copy and Initialization
Vivek Seshadri Yoongu Kim Chris Fallin* Donghyuk Lee
vseshadr@cs.cmu.edu yoongukim@cmu.edu cfallin@cif.net donghyuki@cmu.edu
Rachata Ausavarungnirun Gennady Pekhimenko Yixin Luo
rachata@cmu.edu gpekhime@cs.cmu.edu  yixinluo@andrew.cmu.edu
Onur Mutlu Phillip B. Gibbonst Michael A. Kozucht Todd C. Mowry

onur@cmu.edu phillip.b.gibbons@intel.com michael.a.kozuch@intel.com tcm@cs.cmu.edu
Carnegie Mellon University fIntel Pittsburgh
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Bulk Bitwise AND/OR in DRAM

tically reserve three designated rows tl, t2, and t3

It =row A AND/OR row B

. ppRodaibacob tonivrdvoterowr il

. ppRodaibacokbtonivr@viExaow 2

. hiitiad EevOatadof rowvt B to D11

. Rdtate rovits/lyt2 t3hsimultaneously
. CppRodaibacok ronivrdd H12(/233to Resduttirow

N b WN M-

Use RowClone to perform copy and
initialization operations completely in

DRAM!
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Negation Using the Sense Amplifier

Can we copy the
hegated value
from bitline to a
DRAM cell?/

enable

bitline




Negation Using the Sense Amplifier

Dual Contact CeIJ

Regular wordline
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Negation wordline
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Negation Using the Sense Amplifier

activate ———— MM+ O
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Ambit vs. DDR3: Performance and Energy

B Performance Improvement
MW Energy Reduction

70

60 32X 35X

50

40
30
20
10

0

and/or nand/nor xor/xnor mean
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Integrating Ambit with the System

1. PCle device

— Similar to other accelerators (e.g., GPU)

2. System memory bus
— Ambit uses the same DRAM command/address interface

Pros and cons discussed in paper
(Section 5.4)
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Real-world Applications

* Methodology (Gem5 simulator)

— Processor: x86, 4 GHz, out-of-order, 64-entry instruction
gqueue

— L1 cache: 32 KB D-cache and 32 KB I-cache, LRU policy
— L2 cache: 2 MB, LRU policy

— Memory controller: FR-FCFS, 8 KB row size

— Main memory: DDR4-2400, 1 channel, 1 rank, 8 bank

* Workloads

— Database bitmap indices

— BitWeaving -column scans using bulk bitwise operations

— Set operations - comparing bitvectors with red-black trees
87



Bitmap Indices: Performance

120 . . 6.6X
B Baseline B Ambit

100 6.2X

Execution Time of Query

onsistent reduction in execution time. 6X on average




Speedup offered by Ambit for BitWeaving
select count(*) where cl < field < c2

Speedup offered by Ambit

Number of rows in the database table
J1m H2m B4m H38m

14
12
10

O N A O O

il

4

—12X

8 12 16 20 24 28 32

Number of bits for each column value 89



Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

CSC 2224: Parallel Computer
Architecture and Programming
Advanced Memory

Prof. Gennady Pekhimenko
University of Toronto
Fall 2022

The content of this lecture is adapted from the slides of
Vivek Seshadri, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU
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