
CSC 2224: Parallel Computer
Architecture and Programming

Main Memory. DRAM.

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU

Outline
1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell
– DRAM Array
– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013 Adaptive-

Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012) 2

DRAM Bank

3

How to build a DRAM bank
from a DRAM array?

DRAM Bank: Single DRAM Array?

4

10
00

0+
 ro

w
s

Ro
w

 D
ec

od
er

1 0 0 1 1 0 0 1

Long bitline
Difficult to sense data

in far away cells

Ro
w

 A
dd

re
ss

DRAM Bank: Collection of Arrays

5

Ro
w

De

co
de

r

1 0 0 1 1 0 0 1Ro
w

De

co
de

r

Row Address Column Read/Write

Data

Subarray

DRAM Operation: Summary

6

Ro
w

De

co
de

r

1 0 0 1 1 0 0 1Ro
w

De

co
de

r
Row Address Column Read/Write

Row m, Col n

m

1. Enable row m

2. Access col n

3. Close row

n

m

DRAM Chip Hierarchy

7

Ro
w

De

co
de

r

1 0 0 1 1 0 0 1Ro
w

De

co
de

r
Row Address Column Read/Write

Collection of Banks

Collection of Subarrays

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;

Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)

8

Factors That Affect Performance

1. Latency
– How fast can DRAM serve a request?

2. Parallelism
– How many requests can DRAM serve in parallel?

9

DRAM Chip Hierarchy

10

Ro
w

De

co
de

r

1 0 0 1 1 0 0 1Ro
w

De

co
de

r
Row Address Column Read/Write

Collection of Banks

Collection of Subarrays

Latency

Parallelism

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;

Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)

11

Subarray Size: Rows/Subarray

12

Number of rows in subarray

Latency Chip Area

Subarray Size vs. Access Latency

13

Smaller subarrays => lower access latency

Shorter Bitlines => Faster access

Subarray Size vs. Chip Area
Large Subarray Smaller Subarrays

14

Area
Cost

Smaller subarrays => larger chip area

Chip Area vs. Access Latency

20 30 40 50 60
0

1

2

3

4

Access Latency (ns)

No
rm

al
ize

d
Ch

ip
 A

re
a

Commodity DRAM
(512 rows/subarray)

32 rows/subarray

15

Why is DRAM so slow?

Chip Area vs. Access Latency

20 30 40 50 60
0

1

2

3

4

Access Latency (ns)

No
rm

al
ize

d
Ch

ip
 A

re
a

Commodity DRAM
(512 rows/subarray)

32 rows/subarray

?

How to enable low latency without high area overhead?
16

New Proposal

Large Subarray Small SubarrayOur Proposal
17

Low area cost

Tiered-Latency DRAM

Near Segment

Far Segment

+ Lower access latency
+ Lower energy/access

- Higher access latency
- Higher energy/access

Map frequently accessed data to near segment

18

Results Summary

19
Performance

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Energy Consumption
0.0

0.2

0.4

0.6

0.8

1.0

1.212%
23%

Commodity DRAM Tiered-Latency DRAM

Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM

Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri,
Jamie Liu, Lavanya Subramanian, Onur Mutlu

Published in the proceedings of 19th IEEE International
Symposium on

High Performance Computer Architecture 2013

20

DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM cell

Sense amplifier

Three steps of
charge movement

Sensing RestoreTiming Parameters

Data 0

Data 1

cell

time

ch
ar

ge
Sense amplifier

DRAM Charge over Time

Why does DRAM need the extra timing margin?

In theory margin

cell

Sense amplifier

In practice

1. Process Variation
– DRAM cells are not equal
– Leads to extra timing margin for cell

that can store small amount of charge

2. Temperature Dependence
– DRAM leaks more charge at higher

temperature
– Leads to extra timing margin when

operating at low temperature

Two Reasons for Timing Margin

1. Process Variation
– DRAM cells are not equal
– Leads to extra timing margin for cell

that can store small amount of charge;

1. Process Variation
– DRAM cells are not equal
– Leads to extra timing margin for cells

that can store large amount of charge

Same size 
Same charge 

Different size 
Different charge 

Same latency Different latency
Large variation in cell size 
Large variation in charge 
Large variation in access latency

DRAM Cells are Not Equal
RealIdeal

Largest cell

Smallest cell

1. Process Variation
– DRAM cells are not equal
– Leads to extra timing margin for cells

that can store large amount of charge

2. Temperature Dependence
– DRAM leaks more charge at higher

temperature
– Leads to extra timing margin when

operating at low temperature

Two Reasons for Timing Margin

2. Temperature Dependence
– DRAM leaks more charge at higher

temperature
– Leads to extra timing margin when

operating at low temperature

2. Temperature Dependence
– DRAM leaks more charge at higher

temperature
– Leads to extra timing margin when

operating at low temperature

Cells store small charge at high
temperature
and large charge at low temperature
 Large variation in access latency

Charge Leakage Temperature
Room Temp. Hot Temp. (85°C)

Small leakage Large leakage

DRAM Timing Parameters
• DRAM timing parameters are dictated by

the worst case
– The smallest cell with the smallest charge

in all DRAM products
– Operating at the highest temperature

• Large timing margin for the common case Can lower latency for the
common case

Temperature
Controller

PC

HeaterFPGAs FPGAs

DRAM Testing Infrastructure

Typical DIMM at
Low Temperature

Obs 1. Faster Sensing

More charge

Strong charge
flow

Faster sensing

Typical DIMM at Low Temperature
 More charge  Faster sensing

Timing
(tRCD)

17% ↓
 No Errors

115 DIMM
characterization

Obs 2. Reducing Restore Time

Larger cell &
Less leakage 
Extra charge

No need to fully
restore charge

Typical DIMM at lower temperature
 More charge  Restore time reduction

 Read (tRAS)

37% ↓
 Write (tWR)

54% ↓
No Errors

115 DIMM
characterization

Typical DIMM at
Low Temperature

Empty
(0V)

Full
(Vdd)

Half
Obs 3. Reducing Precharge Time

Bi
tli

ne

Sense amplifier

Sensing Precharge

Precharge ? – Setting bitline to half-full charge

Typical DIMM at
Low Temperature

Empty
(0V) Full (Vdd)

Half

bitline

Not fully
precharged

More charge
 strong sensing

Access empty cell Access full cell

Timing
(tRP)

35% ↓
 No Errors

115 DIMM
characterization

Typical DIMM at Lower Temperature
 More charge  Precharge time reduction

Obs 3. Reducing Precharge Time

Adaptive-Latency DRAM
• Key idea

– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer profiles multiple sets of
reliable DRAM timing parameters at different
temperatures for each DIMM
– System monitors DRAM temperature & uses appropriate

DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
co

py
s.c

lu
st

er
gu

ps

no
n-

in
te

n.
..

in
te

ns
iv

e
al

l-w
or

kl
...0%

5%
10%
15%
20%
25% Single Core Multi Core

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
co

py
s.c

lu
st

er
gu

ps

no
n-

in
te

n.
..

in
te

ns
iv

e
al

l-w
or

kl
...0%

5%
10%
15%
20%
25% Single Core Multi Core

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
co

py
s.c

lu
st

er
gu

ps

no
n-

in
te

n.
..

in
te

ns
iv

e
al

l-w
or

kl
...0%

5%
10%
15%
20%
25% Single Core Multi Core

14.0%

2.9%

so
pl

ex m
cf

m
ilc lib
q

lb
m

ge
m

s
co

py
s.c

lu
st

er
gu

ps

no
n-

in
te

n.
..

in
te

ns
iv

e
al

l-w
or

kl
...0%

5%
10%
15%
20%
25% Single Core

10.4%

Real System Evaluation

AL-DRAM provides high performance
improvement, greater for multi-core workloads

Pe
rfo

rm
an

ce
 Im

pr
ov

em
en

t Average
Improvement

al
l-3

5-
w

or
kl

oa
d

Summary: AL-DRAM
• Observation

– DRAM timing parameters are dictated by the worst-case cell
(smallest cell at highest temperature)

• Our Approach: Adaptive-Latency DRAM (AL-DRAM)
– Optimizes DRAM timing parameters for the common case

(typical DIMM operating at low temperatures)

• Analysis: Characterization of 115 DIMMs
– Great potential to lower DRAM timing parameters (17 –

54%) without any errors
• Real System Performance Evaluation

– Significant performance improvement (14% for memory-
intensive workloads) without errors (33 days)

Adaptive-Latency DRAM: Optimizing
DRAM Timing for the Common-Case

Donghyuk Lee, Yoongu Kim,
Gennady Pekhimenko, Samira Khan, Vivek

Seshadri, Kevin Chang, and Onur Mutlu
Published in the proceedings of 21st

International Symposium on High Performance
Computer Architecture 2015

36

Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)

37

Parallelism: Demand vs. Supply
Demand Supply

Out-of-order
Execution

Multi-cores

Prefetchers

38

Multiple
Banks

Increasing Number of Banks?

How to improve available parallelism within DRAM?

Adding more banks → Replication of shared structures

Replication → Cost

39

Our Observation

40

Time

1. Wordline enable
2. Charge sharing

3. Sense amplify

4. Charge restoration

5. Wordline disable

6. Restore sense-amps

Data Access

Local to a subarray

Subarray-Level Parallelism

41

Ro
w

 D
ec

od
er

1 0 0 1 1 0 0 1

Ro
w

 D
ec

od
er

Row Address Column Read/Write

Ro
w

 A
dd

re
ss

Ro
w

 A
dd

re
ss

Replicate

Time share

Subarray-Level Parallelism: Benefits

42

Time

Data Access

Data Access

Data Access

Data Access Saved Time

Commodity DRAM

Subarray-Level Parallelism

Two requests to
different subarrays
in same bank

Results Summary

43

Performance
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Energy Consumption
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Commodity DRAM Subarray-Level Parallelism

17%

19%

A Case for Exploiting Subarray-Level
Parallelism (SALP) in DRAM

Yoongu Kim, Vivek Seshadri, Donghyuk Lee,
Jamie Liu, Onur Mutlu

Published in the proceedings of 39th

International Symposium on Computer Architecture
2012

44

CSC 2224: Parallel Computer
Architecture and Programming
Main Memory Fundamentals

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of
Vivek Seshadri, Donghyuk Lee, Yoongu Kim,
and lectures of Onur Mutlu @ ETH and CMU

Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014

46

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

1

10

100

Capacity Bandwidth Latency

DR
AM

 Im
pr

ov
em

en
t

(lo
g)

Review: Memory Latency Lags Behind
128x

20x

1.3x

Memory latency remains almost constant

We Need A Paradigm Shift To …
• Enable computation with minimal data movement

• Compute where it makes sense (where data resides)

• Make computing architectures more data-centric

48

Processing Inside Memory

• Many questions … How do we design the:
– compute-capable memory & controllers?
– processor chip?
– software and hardware interfaces?
– system software and languages?
– algorithms?

Cache

Processor
Core

Interconnec
t

 Memory Database
Graphs
Media

Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

Why In-Memory Computation Today?

• Push from Technology
– DRAM Scaling at jeopardy

  Controllers close to DRAM
  Industry open to new memory architectures

• Pull from Systems and Applications
– Data access is a major system and application bottleneck
– Systems are energy limited
– Data movement much more energy-hungry than computation

50

Dally, HiPEAC 2015

Two Approaches to In-Memory Processing
• 1. Minimally change DRAM to enable simple yet

powerful computation primitives
– RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data

(Seshadri et al., MICRO 2013)
– Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
– Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit S

trided Accesses
 (Seshadri et al., MICRO 2015)

• 2. Exploit the control logic in 3D-stacked memory to
enable more comprehensive computation near memory
– PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture

(Ahn et al., ISCA 2015)
– A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing (Ahn et al., ISCA 2015)
– Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation (Hsieh

et al., ICCD 2016)

51

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf

Approach 1: Minimally Changing DRAM
• DRAM has great capability to perform bulk data movement and

computation internally with small changes
– Can exploit internal bandwidth to move data
– Can exploit analog computation capability
– …

• Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
– RowClone: Fast and Efficient In-DRAM Copy and Initializa

tion of Bulk Data
 (Seshadri et al., MICRO 2013)

– Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
– Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Sp

atial Locality of Non-unit Strided Accesses
 (Seshadri et al., MICRO 2015)

52

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf

Starting Simple: Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initializatio

n

src dst

dstval

Bulk Data Copy and Initialization

Bulk Data
Copy

Bulk Data
Initializatio

n

src dst

dstval

Bulk Data Copy and Initialization

55

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+
ISCA’15]

Today’s Systems: Bulk Data
Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

561046ns, 3.6uJ (for 4KB page copy via DMA)

Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

571046ns, 3.6uJ  90ns, 0.04uJ

RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
 Idea: Two consecutive ACTivates

RowClone: Intra-
Subarray

VDD/2

VDD/2

0

VDD/2 + δ

0

VDD
VDDVDD/2 + δ

Sense Amplifier
(Row Buffer)

Amplify
the

difference

0

Data gets
copied

src

dst

RowClone: Intra-
Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to
row buffer)
2. Activate dst row (disconnect src from

row buffer, connect dst – copy data from
row buffer to dst)

RowClone: Inter-Bank
M

em
or

y
Ch

an
ne

l

Ch
ip

 I/
O Bank

Shared
internal
bus

Overlap the latency of the read and
the write

1.9X latency reduction, 3.2X energy
reduction

M
em

or
y

Ch
an

ne
l

Ch
ip

 I/
O

Ban
k Bank I/O

Subarray

Intra Subarray
Copy (2 ACTs)

Inter Bank Copy
(Pipelined

Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost

RowClone: Fast Row
Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)

63

RowClone: Bulk Initialization

• Initialization with arbitrary data
– Initialize one row
– Copy the data to other rows

• Zero initialization (most common)
– Reserve a row in each subarray (always zero)
– Copy data from reserved row (FPM mode)
– 6.0X lower latency, 41.5X lower DRAM energy
– 0.2% loss in capacity

64

RowClone: Latency & Energy Benefits

65

In
tra

-S
ub

ar
ra

y

In
te

r-B
an

k

In
te

r-S
ub

ar
ra

y

In
tra

-S
ub

ar
ra

y

Copy Zero

0
4
8

12

Latency Re-
duction

In
tra

-S
ub

ar
ra

y

In
te

r-B
an

k

In
te

r-S
ub

ar
ra

y

In
tra

-S
ub

ar
ra

y

Copy Zero

0

20

40

60

80

Energy Reduction
11.6x

1.9x

6.0x

1.0x

74.4x

3.2x 1.5x

41.5x

Very low cost: 0.01% increase in die
area

Copy and Initialization in Workloads

66

b c fo m s
0

0.2

0.4

0.6

0.8

1
Zero Copy Write Read

Fr
ac

ti
on

 o
f M

em
or

y
Tr

af
-

fic

RowClone: Application
Performance

67

bootup compile forkbench mcached mysql shell
0

10

20

30

40

50

60

70

80
IPC Improvement Energy Reduction

%
 C

om
pa

re
d

to
 B

as
el

in
e

End-to-End System Design

68

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate
occurrences of bulk
copy/initialization across
layers?

How to maximize latency
and energy savings?

How to ensure cache
coherence?

How to handle data
reuse?

Ambit
In-Memory Accelerator for Bulk Bitwise Operations

Using Commodity DRAM Technology

Vivek Seshadri
Donghyuk Lee, Thomas Mullins, Hasan Hassan,

Amirali Boroumand, Jeremie Kim, Michael A.
Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C.

Mowry

Executive Summary
• Problem: Bulk bitwise operations

– present in many applications, e.g., databases, search filters
– existing systems are memory bandwidth limited

• Our Proposal: Ambit
– perform bulk bitwise operations completely inside DRAM
– bulk bitwise AND/OR: simultaneous activation of three rows
– bulk bitwise NOT: inverters already in sense amplifiers
– less than 1% area overhead over existing DRAM chips

• Results compared to state-of-the-art baseline
– average across seven bulk bitwise operations

• 32X performance improvement, 35X energy reduction
– 3X-7X performance for real-world data-intensive applications70

[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017 71

Bulk
Bitwise

Operation
s

BitWeaving
(database queries)

BitFunnel
(web search)

Bitmap indices
(database indexing)

Set operations

Encryption algorithms

DNA
sequence mapping

...

Today, DRAM is just a storage device!

72

Process
or

(CPU,
GPU,

FPGA)

DRA
MChannel

Write

Read

Throughput of bulk bitwise
operations limited by available

memory bandwidth

Our Approach

73

Processor
(CPU,
GPU,

FPGA or
PiM)

DRAMChannel

Use analog operation of DRAM to
perform bitwise operations
completely inside memory!

Inside a DRAM Chip

74

…… …
…
…

…
2D Array

of DRAM Cells

Sense amplifiers
8KB

DRAM Cell Operation

75

Sens
e

Ampenable

bitline

wordline

capacitor

access
transisto

r

bitline

½ VDD + δ

DRAM Cell Operation

76

enable

bitline

wordline

capacitor

access
transist

or

0 ½ VDD

01

1 VDD

raise
wordli

ne

enable
sense

amp

connects
cell to
bitlinecell loses

charge to
bitline

cell regains
charge

Sens
e

Amp

deviation
in bitline
voltage

½ VDD0
bitline

½ VDD + δ
Triple-Row Activation: Majority Function

77

0 ½ VDD

01

1 VDD

enable
sense

amp

Sens
e

Amp

activat
e

all
three
rows

01

01

Bitwise AND/OR Using Triple-Row Activation

78

1

1

1

1

VDD

Sens
e

Amp

A

B

C

Bitwise AND/OR Using Triple-Row Activation

79

1

1

1

1

VDD

Sens
e

Amp

A

B

C

Output = AB + BC + CA
= C (A OR B) +

 ~C (A AND B)

Control the value of
C to perform bitwise
OR or bitwise AND

of A and B

38X improvement in raw
throughput

44X reduction in energy
consumption

for bulk bitwise AND/OR
operations

1. Copy data of row A to row t1
2. Copy data of row B to row t2
3. Initialize data of row t3 to 0/1
4. Activate rows t1/t2/t3 simultaneously
5. Copy data of row t1/t2/t3 to Result row

1. Copy data of row A to row t1
2. Copy data of row B to row t2
3. Initialize data of row t3 to 0/1
4. Activate rows t1/t2/t3 simultaneously
5. Copy data of row t1/t2/t3 to Result row

Bulk Bitwise AND/OR in DRAM

80

Result = row A AND/OR row B

Statically reserve three designated rows t1, t2, and t3

MICRO 2013

1. Copy RowClone data of row A to row t1
2. Copy RowClone data of row B to row t2
3. Initialize RowClone data of row t3 to 0/1
4. Activate rows t1/t2/t3 simultaneously
5. Copy RowClone data of row t1/t2/t3 to Result row

Bulk Bitwise AND/OR in DRAM

81

Result = row A AND/OR row B

Use RowClone to perform copy and
initialization operations completely in

DRAM!

Statically reserve three designated rows t1, t2, and t3

1. Copy data of row A to row t1
2. Copy data of row B to row t2
3. Initialize data of row t3 to 0/1
4. Activate rows t1/t2/t3 simultaneously
5. Copy data of row t1/t2/t3 to Result row

Negation Using the Sense Amplifier

82

Sens
e

Amp

bitline

bitline

enable

Can we copy the
negated value

from bitline to a
DRAM cell?

Negation Using the Sense Amplifier

83

Sens
e

Amp

Dual Contact Cell
Regular wordline

Negation wordline bitline

bitline

enable

Negation Using the Sense Amplifier

84

enable
sense

amp

Sens
e

Amp

½ VDD + δ½ VDDVDD

½ VDD0

activate
source

activate
negation
wordline

bitline

bitline

source

Ambit vs. DDR3: Performance and Energy

85
not and/or nand/nor xor/xnor mean0

10

20

30

40

50

60

70

Performance Improvement
Energy Reduction

32X 35X

Integrating Ambit with the System

1. PCIe device
– Similar to other accelerators (e.g., GPU)

2. System memory bus
– Ambit uses the same DRAM command/address interface

Pros and cons discussed in paper
(Section 5.4)

86

Real-world Applications
• Methodology (Gem5 simulator)

– Processor: x86, 4 GHz, out-of-order, 64-entry instruction
queue

– L1 cache: 32 KB D-cache and 32 KB I-cache, LRU policy
– L2 cache: 2 MB, LRU policy
– Memory controller: FR-FCFS, 8 KB row size
– Main memory: DDR4-2400, 1 channel, 1 rank, 8 bank

• Workloads
– Database bitmap indices
– BitWeaving –column scans using bulk bitwise operations
– Set operations – comparing bitvectors with red-black trees

87

Bitmap Indices: Performance

88Consistent reduction in execution time. 6X on average

w = 2 w = 3 w = 4 w = 2 w = 3 w = 4
n = 8m n = 16m

0

20

40

60

80

100

120
Baseline Ambit

Ex
ec

uti
on

 T
im

e
of

 Q
ue

ry

5.4X
6.1X

6.3X 5.7X

6.2X

6.6X

Speedup offered by Ambit for BitWeaving

89

4 8 12 16 20 24 28 320
2
4
6
8

10
12
14

1m 2m 4m 8m

Number of bits for each column value

Sp
ee

du
p

off
er

ed
 b

y
Am

bi
t

Number of rows in the database table

select count(*) where c1 < field < c2

12X

Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014

90

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf

CSC 2224: Parallel Computer
Architecture and Programming

Advanced Memory

Prof. Gennady Pekhimenko
University of Toronto

Fall 2022

The content of this lecture is adapted from the slides of
Vivek Seshadri, Yoongu Kim,

and lectures of Onur Mutlu @ ETH and CMU

	CSC 2224: Parallel Computer Architecture and Programming Main M
	Outline
	DRAM Bank
	DRAM Bank: Single DRAM Array?
	DRAM Bank: Collection of Arrays
	DRAM Operation: Summary
	DRAM Chip Hierarchy
	Outline (2)
	Factors That Affect Performance
	DRAM Chip Hierarchy (2)
	Outline (3)
	Subarray Size: Rows/Subarray
	Subarray Size vs. Access Latency
	Subarray Size vs. Chip Area
	Chip Area vs. Access Latency
	Chip Area vs. Access Latency (2)
	New Proposal
	Tiered-Latency DRAM
	Results Summary
	Tiered-Latency DRAM: A Low Latency and Low Cost DRAM Architectu
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	DRAM Testing Infrastructure
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Adaptive-Latency DRAM
	Slide 34
	Slide 35
	Adaptive-Latency DRAM: Optimizing DRAM Timing for the Common-Ca
	Outline (4)
	Parallelism: Demand vs. Supply
	Increasing Number of Banks?
	Our Observation
	Subarray-Level Parallelism
	Subarray-Level Parallelism: Benefits
	Results Summary (2)
	A Case for Exploiting Subarray-Level Parallelism (SALP) in DRAM
	CSC 2224: Parallel Computer Architecture and Programming Main M (2)
	Review #5
	Review: Memory Latency Lags Behind
	We Need A Paradigm Shift To …
	Processing Inside Memory
	Why In-Memory Computation Today?
	Two Approaches to In-Memory Processing
	Approach 1: Minimally Changing DRAM
	Starting Simple: Data Copy and Initialization
	Bulk Data Copy and Initialization
	Bulk Data Copy and Initialization (2)
	Today’s Systems: Bulk Data Copy
	Future Systems: In-Memory Copy
	RowClone: In-DRAM Row Copy
	RowClone: Intra-Subarray
	RowClone: Intra-Subarray (II)
	RowClone: Inter-Bank
	Generalized RowClone
	RowClone: Fast Row Initialization
	RowClone: Bulk Initialization
	RowClone: Latency & Energy Benefits
	Copy and Initialization in Workloads
	RowClone: Application Performance
	End-to-End System Design
	Ambit In-Memory Accelerator for Bulk Bitwise Operations Using
	Executive Summary
	Slide 71
	Today, DRAM is just a storage device!
	Our Approach
	Inside a DRAM Chip
	DRAM Cell Operation
	DRAM Cell Operation (2)
	Triple-Row Activation: Majority Function
	Bitwise AND/OR Using Triple-Row Activation
	Bitwise AND/OR Using Triple-Row Activation (2)
	Bulk Bitwise AND/OR in DRAM
	Bulk Bitwise AND/OR in DRAM (2)
	Negation Using the Sense Amplifier
	Negation Using the Sense Amplifier (2)
	Negation Using the Sense Amplifier (3)
	Ambit vs. DDR3: Performance and Energy
	Integrating Ambit with the System
	Real-world Applications
	Bitmap Indices: Performance
	Speedup offered by Ambit for BitWeaving
	Review #5 (2)
	CSC 2224: Parallel Computer Architecture and Programming Advanc

