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Outline
1. What is DRAM?

2. DRAM Internal Organization
– DRAM Cell
– DRAM Array
– DRAM Bank

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013 Adaptive-

Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012) 2



DRAM Bank
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How to build a DRAM bank 
from a DRAM array?



DRAM Bank: Single DRAM Array?
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DRAM Bank: Collection of Arrays
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DRAM Operation: Summary
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DRAM Chip Hierarchy
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013; 

Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)
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Factors That Affect Performance

1. Latency
– How fast can DRAM serve a request?

2. Parallelism
– How many requests can DRAM serve in parallel?

9



DRAM Chip Hierarchy
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013; 

Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)

11



Subarray Size: Rows/Subarray
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Number of rows in subarray

Latency Chip Area



Subarray Size vs. Access Latency
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Smaller subarrays => lower access latency

Shorter Bitlines => Faster access



Subarray Size vs. Chip Area
Large Subarray Smaller Subarrays
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Area
Cost

Smaller subarrays => larger chip area



Chip Area vs. Access Latency
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Why is DRAM so slow?



Chip Area vs. Access Latency
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How to enable low latency without high area overhead?
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New Proposal

Large Subarray Small SubarrayOur Proposal
17

Low area cost



Tiered-Latency DRAM

Near Segment

Far Segment

+ Lower access latency
+ Lower energy/access

- Higher access latency
- Higher energy/access

Map frequently accessed data to near segment
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Results Summary
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Tiered-Latency DRAM:
A Low Latency and Low Cost DRAM 

Architecture

Donghyuk Lee, Yoongu Kim, Vivek Seshadri, 
Jamie Liu, Lavanya Subramanian, Onur Mutlu

Published in the proceedings of 19th IEEE International 
Symposium on 

High Performance Computer Architecture 2013
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DRAM Stores Data as Charge

1. Sensing
2. Restore
3. Precharge

DRAM cell

Sense amplifier

Three steps of 
charge movement



Sensing RestoreTiming Parameters
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1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cell 

that can store small amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher 

temperature
– Leads to extra timing margin when 

operating at low temperature 

Two Reasons for Timing Margin

1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cell 

that can store small amount of charge;

1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cells 

that can store large amount of charge



Same size 
Same charge 

Different size 
Different charge 

Same latency Different latency
Large variation in cell size 
Large variation in charge 
Large variation in access latency

DRAM Cells are Not Equal
RealIdeal

Largest cell

Smallest cell



1. Process Variation 
– DRAM cells are not equal
– Leads to extra timing margin for cells 

that can store large amount of charge

2. Temperature Dependence 
– DRAM leaks more charge at higher 

temperature
– Leads to extra timing margin when 

operating at low temperature 

Two Reasons for Timing Margin

2. Temperature Dependence 
– DRAM leaks more charge at higher 

temperature
– Leads to extra timing margin when 

operating at low temperature 

2. Temperature Dependence 
– DRAM leaks more charge at higher 

temperature
– Leads to extra timing margin when 

operating at low temperature 



Cells store small charge at high 
temperature 
and large charge at low temperature 
 Large variation in access latency

Charge Leakage  Temperature
Room Temp. Hot Temp. (85°C)

Small leakage Large leakage



DRAM Timing Parameters
• DRAM timing parameters are dictated by 

the worst case 
– The smallest cell with the smallest charge   

in all DRAM products
– Operating at the highest temperature

• Large timing margin for the common case  Can lower latency for the 
common case
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Typical DIMM at 
Low Temperature

Obs 1. Faster Sensing

More charge

Strong charge
flow

Faster sensing

Typical DIMM at Low Temperature
 More charge  Faster sensing

Timing
(tRCD)

17% ↓
 No Errors

115 DIMM 
characterization



Obs 2. Reducing Restore Time

Larger cell & 
Less leakage  
Extra charge

No need to fully
restore charge

Typical DIMM at lower temperature
 More charge  Restore time reduction

 Read (tRAS)

37% ↓
 Write (tWR)

54% ↓
No Errors

115 DIMM 
characterization

Typical DIMM at 
Low Temperature



Empty 
(0V)

Full 
(Vdd)

Half
Obs 3. Reducing Precharge Time

Bi
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ne

Sense amplifier

Sensing Precharge

Precharge ? – Setting bitline to half-full charge 

Typical DIMM at 
Low Temperature



Empty 
(0V) Full (Vdd)

Half

bitline

Not fully 
precharged

More charge
 strong sensing

Access empty cell Access full cell

Timing
(tRP)

35% ↓
 No Errors

115 DIMM 
characterization

Typical DIMM at Lower Temperature
 More charge  Precharge time reduction

Obs 3. Reducing Precharge Time



Adaptive-Latency DRAM
• Key idea

– Optimize DRAM timing parameters online

• Two components
– DRAM manufacturer profiles multiple sets of 
reliable DRAM timing parameters at different 
temperatures for each DIMM
– System monitors DRAM temperature & uses appropriate 

DRAM timing parameters

reliable DRAM timing parameters

DRAM temperature
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Summary: AL-DRAM
• Observation

– DRAM timing parameters are dictated by the worst-case cell  
(smallest cell at highest temperature)

• Our Approach: Adaptive-Latency DRAM (AL-DRAM) 
– Optimizes DRAM timing parameters for the common case 

(typical DIMM operating at low temperatures)

• Analysis: Characterization of 115 DIMMs
– Great potential to lower DRAM timing parameters (17 – 

54%) without any errors
• Real System Performance Evaluation 

– Significant performance improvement (14% for memory-
intensive workloads) without errors (33 days)



Adaptive-Latency DRAM: Optimizing 
DRAM Timing for the Common-Case

Donghyuk Lee, Yoongu Kim, 
Gennady Pekhimenko, Samira Khan, Vivek 

Seshadri, Kevin Chang, and Onur Mutlu
Published in the proceedings of 21st

International Symposium on High Performance 
Computer Architecture 2015
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Outline

1. What is DRAM?

2. DRAM Internal Organization

3. Problems and Solutions
– Latency (Tiered-Latency DRAM, HPCA 2013;
Adaptive-Latency DRAM, HPCA 2015)
– Parallelism (Subarray-level Parallelism, ISCA 2012)
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Parallelism: Demand vs. Supply
Demand Supply

Out-of-order 
Execution

Multi-cores

Prefetchers

38

Multiple
Banks



Increasing Number of Banks?

How to improve available parallelism within DRAM?

Adding more banks → Replication of shared structures

Replication → Cost

39



Our Observation
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Time

1. Wordline enable
2. Charge sharing

3. Sense amplify

4. Charge restoration

5. Wordline disable

6. Restore sense-amps

Data Access

Local to a subarray



Subarray-Level Parallelism
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Subarray-Level Parallelism: Benefits
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Time

Data Access

Data Access

Data Access

Data Access Saved Time

Commodity DRAM

Subarray-Level Parallelism

Two requests to 
different subarrays 
in same bank



Results Summary
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A Case for Exploiting Subarray-Level 
Parallelism (SALP) in DRAM

Yoongu Kim, Vivek Seshadri, Donghyuk Lee, 
Jamie Liu, Onur Mutlu

Published in the proceedings of 39th

International Symposium on Computer Architecture 
2012
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Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014

46

https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
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We Need A Paradigm Shift To …
• Enable computation with minimal data movement

• Compute where it makes sense (where data resides)

• Make computing architectures more data-centric

48



Processing Inside Memory

• Many questions … How do we design the:
– compute-capable memory & controllers?
– processor chip?
– software and hardware interfaces?
– system software and languages?
– algorithms?

Cache

Processor
Core

 
Interconnec
t

 Memory Database
Graphs
Media  

Query

Results

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons



Why In-Memory Computation Today?

• Push from Technology
– DRAM Scaling at jeopardy 

    Controllers close to DRAM
    Industry open to new memory architectures

• Pull from Systems and Applications
– Data access is a major system and application bottleneck
– Systems are energy limited
– Data movement much more energy-hungry than computation

50

Dally, HiPEAC 2015



Two Approaches to In-Memory Processing 
• 1. Minimally change DRAM to enable simple yet 

powerful   computation primitives
– RowClone: Fast and Efficient In-DRAM Copy and Initialization of Bulk Data 

(Seshadri et al., MICRO 2013)
– Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
– Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Spatial Locality of Non-unit S

trided Accesses
 (Seshadri et al., MICRO 2015)

• 2. Exploit the control logic in 3D-stacked memory to 
enable more comprehensive computation near memory
– PIM-Enabled Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory Architecture 

(Ahn et al., ISCA 2015)
– A Scalable Processing-in-Memory Accelerator for Parallel Graph Processing (Ahn et al., ISCA 2015)
– Accelerating Pointer Chasing in 3D-Stacked Memory: Challenges, Mechanisms, Evaluation  (Hsieh 

et al., ICCD 2016)

51

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://people.inf.ethz.ch/omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
http://users.ece.cmu.edu/~omutlu/pub/pim-enabled-instructons-for-low-overhead-pim_isca15.pdf
http://users.ece.cmu.edu/~omutlu/pub/tesseract-pim-architecture-for-graph-processing_isca15.pdf
https://people.inf.ethz.ch/omutlu/pub/in-memory-pointer-chasing-accelerator_iccd16.pdf


Approach 1: Minimally Changing DRAM
• DRAM has great capability to perform bulk data movement and 

computation internally with small changes
– Can exploit internal bandwidth to move data
– Can exploit analog computation capability
– …

• Examples: RowClone, In-DRAM AND/OR, Gather/Scatter DRAM
– RowClone: Fast and Efficient In-DRAM Copy and Initializa

tion of Bulk Data
 (Seshadri et al., MICRO 2013)

– Fast Bulk Bitwise AND and OR in DRAM (Seshadri et al., IEEE CAL 2015)
– Gather-Scatter DRAM: In-DRAM Address Translation to Improve the Sp

atial Locality of Non-unit Strided Accesses
 (Seshadri et al., MICRO 2015)

52

http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/rowclone_micro13.pdf
http://users.ece.cmu.edu/~omutlu/pub/in-DRAM-bulk-AND-OR-ieee_cal15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf
https://users.ece.cmu.edu/~omutlu/pub/GSDRAM-gather-scatter-dram_micro15.pdf


Starting Simple: Data Copy and Initialization
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Bulk Data Copy and Initialization
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Copy
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Bulk Data Copy and Initialization

55

Forking

00000
00000
00000

Zero initialization
(e.g., security)

VM Cloning
Deduplication

Checkpointing

Page Migration
Many more

memmove & memcpy: 5% cycles in Google’s datacenter [Kanev+ 
ISCA’15]



Today’s Systems: Bulk Data 
Copy

Memory

MCL3L2L1CPU

1) High latency

2) High bandwidth utilization

3) Cache pollution

4) Unwanted data movement

561046ns, 3.6uJ    (for 4KB page copy via DMA)



Future Systems: In-Memory Copy

Memory

MCL3L2L1CPU

1) Low latency

2) Low bandwidth utilization

3) No cache pollution

4) No unwanted data movement

571046ns, 3.6uJ    90ns, 0.04uJ



RowClone: In-DRAM Row Copy

Row Buffer (4 Kbytes)

Data Bus

8 bits

DRAM subarray

4 Kbytes

Step 1: Activate row A

Transfer 
row

Step 2: Activate row B

Transfer
row

Negligible HW cost
   Idea: Two consecutive ACTivates



RowClone: Intra-
Subarray
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RowClone: Intra-
Subarray (II)

r c r o ws

s t o wd r

Row Buffer

r c r o ws

s r c r o w

1. Activate src row (copy data from src to 
row buffer)
2. Activate dst row (disconnect src from 

row buffer, connect dst – copy data from 
row buffer to dst)



RowClone: Inter-Bank
M

em
or

y 
Ch

an
ne

l

Ch
ip

 I/
O Bank

Shared 
internal 
bus

Overlap the latency of the read and 
the write

1.9X latency reduction, 3.2X energy 
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Copy (2 ACTs)
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Internal RD/WR)

Inter Subarray Copy
(Use Inter-Bank Copy Twice)

Generalized RowClone 0.01% area cost



RowClone: Fast Row 
Initialization

0 0 0 0 0 0 0 0 0 0 0 0

Fix a row at Zero
(0.5% loss in capacity)

63



RowClone: Bulk Initialization

• Initialization with arbitrary data
– Initialize one row
– Copy the data to other rows

• Zero initialization (most common)
– Reserve a row in each subarray (always zero)
– Copy data from reserved row (FPM mode)
– 6.0X lower latency, 41.5X lower DRAM energy
– 0.2% loss in capacity

64



RowClone: Latency & Energy Benefits
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Copy and Initialization in Workloads
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RowClone: Application 
Performance

67
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End-to-End System Design

68

 DRAM (RowClone)

Microarchitecture

ISA

Operating System

Application
How to communicate 
occurrences of bulk 
copy/initialization across 
layers?

How to maximize latency 
and energy savings?

How to ensure cache 
coherence?

How to handle data 
reuse?



Ambit
In-Memory Accelerator for Bulk Bitwise Operations 

Using Commodity DRAM Technology

Vivek Seshadri
Donghyuk Lee, Thomas Mullins, Hasan Hassan, 

Amirali Boroumand, Jeremie Kim, Michael A. 
Kozuch, Onur Mutlu, Phillip B. Gibbons, Todd C. 

Mowry



Executive Summary
• Problem: Bulk bitwise operations

– present in many applications, e.g., databases, search filters
– existing systems are memory bandwidth limited

• Our Proposal: Ambit
– perform bulk bitwise operations completely inside DRAM
– bulk bitwise AND/OR: simultaneous activation of three rows
– bulk bitwise NOT: inverters already in sense amplifiers
– less than 1% area overhead over existing DRAM chips

• Results compared to state-of-the-art baseline
– average across seven bulk bitwise operations 

• 32X performance improvement, 35X energy reduction
– 3X-7X performance for real-world data-intensive applications70



[1] Li and Patel, BitWeaving, SIGMOD 2013
[2] Goodwin+, BitFunnel, SIGIR 2017 71
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(database indexing)
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Encryption algorithms
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sequence mapping
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Today, DRAM is just a storage device!
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Process
or

(CPU, 
GPU, 

FPGA)

DRA
MChannel

Write

Read

Throughput of bulk bitwise 
operations limited by available 

memory bandwidth



Our Approach
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Processor
(CPU, 
GPU, 

FPGA or 
PiM)

DRAMChannel

Use analog operation of DRAM to 
perform bitwise operations 
completely inside memory!



Inside a DRAM Chip
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8KB



DRAM Cell Operation
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½ VDD + δ

DRAM Cell Operation
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½ VDD + δ
Triple-Row Activation: Majority Function
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Bitwise AND/OR Using Triple-Row Activation
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Bitwise AND/OR Using Triple-Row Activation

79

1
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VDD
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Output = AB  + BC + CA
= C (A OR B) +

 ~C (A AND B)

Control the value of 
C to perform bitwise 
OR or bitwise AND 

of A and B

38X improvement in raw 
throughput

44X reduction in energy 
consumption

for bulk bitwise AND/OR 
operations



1.  Copy data of row A to row t1
2.  Copy data of row B to row t2
3.  Initialize data of row t3 to 0/1
4.  Activate rows t1/t2/t3 simultaneously
5.  Copy data of row t1/t2/t3 to Result row

1.  Copy data of row A to row t1
2.  Copy data of row B to row t2
3.  Initialize data of row t3 to 0/1
4.  Activate rows t1/t2/t3 simultaneously
5.  Copy data of row t1/t2/t3 to Result row

Bulk Bitwise AND/OR in DRAM

80

Result = row A  AND/OR  row B

Statically reserve three designated rows t1, t2, and t3

MICRO 2013



1.  Copy RowClone data of row A to row t1
2.  Copy RowClone data of row B to row t2
3.  Initialize RowClone data of row t3 to 0/1
4.  Activate rows t1/t2/t3 simultaneously
5.  Copy RowClone data of row t1/t2/t3 to Result row

Bulk Bitwise AND/OR in DRAM

81

Result = row A  AND/OR  row B

Use RowClone to perform copy and 
initialization operations completely in 

DRAM!

Statically reserve three designated rows t1, t2, and t3

1.  Copy data of row A to row t1
2.  Copy data of row B to row t2
3.  Initialize data of row t3 to 0/1
4.  Activate rows t1/t2/t3 simultaneously
5.  Copy data of row t1/t2/t3 to Result row



Negation Using the Sense Amplifier
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Negation Using the Sense Amplifier
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Negation Using the Sense Amplifier
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Ambit vs. DDR3: Performance and Energy
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Integrating Ambit with the System

1. PCIe device
– Similar to other accelerators (e.g., GPU)

2. System memory bus
– Ambit uses the same DRAM command/address interface

Pros and cons discussed in paper 
(Section 5.4)
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Real-world Applications
• Methodology (Gem5 simulator)

– Processor: x86, 4 GHz, out-of-order, 64-entry instruction 
queue

– L1 cache: 32 KB D-cache and 32 KB I-cache, LRU policy
– L2 cache: 2 MB, LRU policy
– Memory controller: FR-FCFS, 8 KB row size
– Main memory: DDR4-2400, 1 channel, 1 rank, 8 bank

• Workloads
– Database bitmap indices
– BitWeaving –column scans using bulk bitwise operations
– Set operations – comparing bitvectors with red-black trees
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Bitmap Indices: Performance
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Speedup offered by Ambit for BitWeaving
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Review #5

Flipping Bits in Memory Without Accessin
g Them

Yoongu Kim et al., ISCA 2014
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https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
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